Balancing Reactions

a.
$${}^{73}\text{Ga} \rightarrow {}^{73}\text{Ge} + {}^{0}\underline{}_{1} e$$

b. ${}^{238}\text{U} \rightarrow {}^{234}\text{Th} + {}^{4}\underline{}_{2} He$
c. ${}^{201}\text{Hg} + {}^{0}\underline{}_{1} e \rightarrow {}^{201}\text{Au} + {}^{0}_{0}\gamma$
c. ${}^{1}\underline{}_{0}n + {}^{235}\text{U} \rightarrow {}^{141}\text{Ba} + {}^{92}\underline{}_{36} Kr + {}^{3}\underline{}_{0}n$

What is a decay series?

this is when an unstable nucleus has to go through a number of decays in order to reach a stable configuration. For example:

 $^{238}_{92}$ U \rightarrow 14 steps \rightarrow $^{206}_{82}$ Pb

The 14 steps include 8 alpha and 6 beta emissions.

3. The isotope ²⁴⁷Bk decays by a series of α particle and β particle emissions, eventually ending up as ²⁰⁷Pb. In the complete decay series, how many α and β particles are produced?

The mass indicates the number of α particles needed: 247-207 = 40/4 = 10 α particles required.

The charge indicates the number of β particles needed: 97 = 10(2) + x(-1) + 82 \rightarrow x = 5 β particles required $^{247}_{97}$ Bk \rightarrow 10 $^{4}_{2}\alpha$ + 5 $^{0}_{-1}\beta$ + $^{207}_{82}$ Pb